
Chapter 12

The Pigeonhole Principle

12.1 Statements of the principle

In we put more than n pigeons into n pigeonholes, at least one pigeonhole will house
two or more pigeons. This trivial observation is the basis of ingenious combinatorial
arguments, and is the subject of this chapter. Let’s begin with the various guises of
the pigeonhole principle that are encountered in combinatorics.

Basic form. If m objects are put in n boxes and n < m, then at least one box
contains at least two objects. The one-line proof is by contradiction: If every box
contains at most one object, there are at most n · 1 = n objects. A more rigorous
formulation of the principle is as follows: Given two sets A and B, with |A| = m >
n = |B|, for any function f : A → B there exists b ∈ B such that∣∣{x ∈ A : f(x) = b}

∣∣ > 1.

General form. If m objects are put in n boxes, then at least one box contains at
least dm/ne objects. The proof is again by contradiction: If every box contains at
most dm/ne − 1 < m/n objects, there are less than n(m/n) = m objects. The more
rigorous formulation is: Given two sets A and B, for any function f : A → B there
exists b ∈ B such that ∣∣{x ∈ A : f(x) = b}

∣∣ ≥ ⌈m

n

⌉
.

Dijkstra’s form. For a nonempty finite collection of integers (not necessarily dis-
tinct), the maximum value is at least the average value. It is a good exercise to verify
that this is equivalent to the general form above.

12.2 Simple applications

Let’s begin with some easy applications of the pigeonhole principle.
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First application. There are two San Franciscans with the exact same number
of hairs on their heads. Indeed, according to P&G Hair Facts, the average person’s
head has about 100,000 hairs, while “some people have as many as 150,000.” So it
seems safe to bet that every San Franciscan has at most 700,000 hairs on his or her
head. On the other hand, the year 2000 US Census counted 776,733 San Francisco
residents. The pigeonhole principle implies that at least two of them have the exact
same number of hairs.

Second application. At a cocktail party with six or more people, there are three
mutual acquaintances or three mutual strangers. Indeed, pick an arbitrary person a.
By the pigeonhole principle, among the other five or more people, either there are
three of a’s acquaintances, or three people who are strangers to a. Let’s say there
are three that are a’s acquaintances, the other case is analogous. If those three are
mutual strangers we are done. Otherwise there are two among them, call them b and
c, who know each other. Then a, b and c are mutual acquaintances and we are done.

Third application. Consider an infinite two-dimensional plane, every point of
which is colored either red or blue; then there are two points one yard apart that
are the same color. Indeed, take an arbitrary equilateral triangle with a side length
of one yard. By the pigeonhole principle, two of its vertices have the same color.

Fourth application. Consider the numbers 1, 2, . . . , 2n, and take any n + 1 of
them; then there are two numbers in this sample that are coprime. Indeed, consider
the pairs {1, 2}, {3, 4}, . . . , {2n − 1, 2n}. By the pigeonhole principle, both numbers
from one of these pairs are in the sample. These numbers differ by 1 and are thus
coprime. (This follows from the same argument as in Euclid’s proof of the infinity of
primes.)

12.3 Advanced applications

The following lemma comes from a classical 1935 paper by Paul Erdös and George
Szekeres titled “A combinatorial problem in geometry”:

Lemma 12.3.1. In any ordered sequence of n2+1 distinct real numbers a1, a2, . . . , an2+1,
there is either a monotone increasing subsequence of length n + 1 or a monotone de-
creasing subsequence of length n + 1. Namely, there is a set of indices 1 ≤ i1 < i2 <
· · · < in+1 ≤ n2 +1, such that either ai1 > ai2 > · · · > ain+1 or ai1 < ai2 < · · · < ain+1.

Proof. For 1 ≤ i ≤ n2 + 1, let ηi be the length of the longest monotone increasing
subsequence that starts at ai. If some ηi > n, we are done. Otherwise, by the
pigeonhole principle, there exists 1 ≤ j ≤ n, and some set i1 < i2 < · · · < im of size
m ≥ d(n2 + 1)/ne = n + 1, such that ηi1 = ηi2 = · · · = ηim = j. Now, consider two
numbers aik and aik+1

. If aik < aik+1
, we get an increasing subsequence starting at

aik of length j + 1, which is a contradiction. Hence aik > aik+1
in particular, and
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ai1 > ai2 > · · · > aim in general, giving us a decreasing subsequence of length at least
n + 1.

Here is another pigeonhole gem, the last one for today:

Proposition 12.3.2. Given a sequence of n not necessarily distinct integers a1, a2, . . . , an,
there is a nonempty consecutive subsequence ai, ai+1, . . . , aj whose sum

∑j
m=i am is a

multiple of n. (The subsequence might consist of a single element.)

Proof. Consider the collection(
0∑

i=1

ai,

1∑
i=1

ai,

2∑
i=1

ai, . . . ,

n∑
i=1

ai

)
.

This collection has size n+1 and its first element is the empty sum
∑0

i=1 ai = 0. There
are only n possible remainders modulo n, thus by the pigeonhole principle, there are
two numbers in the above collection of size n + 1 that leave the same remainder. Let
these be

∑l
i=1 ai and

∑k
i=1 ai, with l < k. By a lemma we once proved, it follows that

n
∣∣( k∑

i=1

ai −
l∑

i=1

ai

)
,

which implies

n
∣∣ k∑

i=l+1

ai.
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